

Delay Limitations When Extending Metro Ethernet
into the Wide Area

Joseph F. Lutz

LightRiver Technologies, 3732 Mt. Diablo Boulevard, Suite 156, Lafayette, California 94549
Lutz@LightRiver.com

Advances in layer 2 ethernet transport now make it possible to extend an ethernet network natively into the metro,
regional, and even national spaces. Next generation SONET MSPPs are now being deployed using GFP, VCAT,
RPR to implement these networks. Transport bandwidth on these networks typically starts at the VT1.5 or STS-1
rate and climbs the SONET hierarchy from there. The TCP/IP is now basically THE default network and transport
layer transmission protocols. It is widely (almost universally) deployed and very flexible. And Ethernet has become
essentially the default layer 2 transport protocol upon which this layer 3-4 tcp/ip protocol is transported.

Users of these networks not surprisingly expect that if they put in a big pipe, or long fat pipe, as they are
sometimes called, the performance of their network applications, i.e. ftp, web access, etc. will track the increase in
bandwidth. TCP however has some properties that limit through-put when used over long fat pipes. As the
bandwidth and delay of a Long Fat Pipe increases the through-put of a tcp/ip session can actually decrease, [1,2]
This often provides a nasty surprise to an end user when only a fraction (maybe 10% or less) of a new OC-3 circuit
translates into actual throughput. In fact it is not just the latency that is of concern but it is the bandwidth delay
product that is actually the gating factor. A brief explanation of how tcp works will help explain this phenomenon.

TCP Flow Control
When a tcp session is established it is the tcp receiver that determines the incoming data flow. When a tcp session is
being set up each end of the link allocates an amount of receive buffer and makes this known to the sending end.
What the receiver in essence tells the sender is: “here is the max amount of data you can send me at one time, when
you receive an acknowledgement from me of the data you just sent, then you can send me some more data”. This
receive buffer is also referred to as the receive window or sliding window because as data is received the process
can be viewed as the window sliding to the right. Figure1 shows this process graphically. In figure1A the receiver
has just allocated 16KB of buffer space. The window is usually an integer multiple of the MSS (maximum segment
size), a full discussion of TCP is not necessary for the purposes of this paper however the reader is encouraged to
read [1] for a very lucid description of a TCP session.

During a set up handshake with the transmitter the receiver sends the window (buffer) size to the transmitter.
The transmitter now knows that it can not send more than 16KB at one time. In figure1B the transmitter send 4KB
and the receiver takes this 4KB from the link into its receive buffer leaving 12KB available for new data. The
transmitter maintains a send buffer keeping track of the data that has been sent, upon sending the 4KB bytes the
transmitter knows it is allowed to send no more than 12KB. The transmitter now sends an additional 6KB of data
which is clocked into the receiver buffer from the link as shown in figure1C. The receive window has shrunk to
6KB. The receiver then decides it is time to send the data up to the application. It also decides that now would be a
good time to send an acknowledgement (ACK) to the transmitter letting it know that the 10K bytes arrived ok.
From the ACK sent by the receiver, the transmitter will know the state of the receive window. By sending an
updated status in an ACK packet the receiver controls the flow of data that is allowed to be transmitted over the link.

Fortunately in this simple example the receiver buffer never became full and could basically flow continuously.
Had the receive window become full the transmitter would have had to stop and wait for an ACK before it could
transmit again. If this were to happen the result would be a decrease in throughput, both sides of the connection are
just sitting and waiting, and no data is being transmitted. This could happen in a couple of ways. Firstly if you were
connected to a very busy web or ftp server the server may have to process many I/O requests and may not be able to
transfer data from the buffer in a timely fashion. The other possibility more pertinent to this paper is that the latency
of the link maybe such that the transmitter has sent all the data it is allowed to and then just has to wait until an ACK
works it’s way across the network before it can send more data. Note that this decrease in throughput could be
happening over an error free link. If errors do occur this would only decrease the through-put more as data packets
would also have to be re-transmitted.

NTuC2

The Receive Window Process

The receive buffer is empty and awaiting
data.

4K of data has entered the buffer. The
window slides to the right. Available buffer
space is now 12K.

An additional 6K of data has entered the
buffer. Available buffer space is now 6K.
Data is transferred out of the buffer and an
ACK is sent to the transmitter.

Once the data is transferred to the application
the receive window opens fully.

Fig. 1.

The transmitter has not sent any data yet.

4K of data is sent. The transmitter keeps a copy of
this data in the send buffer.

An additional 6K of data is sent. The send window
has shrunk to 6K before the arrival of the ACK.
After the ACK is received there is no reason to keep
the unACK’ed data as the receiver has received it
OK.

The send window is now wide open.

Fig. 2.

At the transmitter the send window would track as shown in figure2. Notice that the transmitter keeps a copy of

the data as a way of monitoring how much data has been sent in relation to how much it is allowed to send. Keeping
a copy also allows for retransmission in case of lost packets or CRC errored packets. The receiver can use several
mechanisms as defined by IETF RFCs to obtain a retransmission of data. An ACK may also be lost in transmission
in which case the transmitter would have to resend the data because it would have no way of knowing that the
receiver got it ok, this also would greatly reduce the throughput.

DATA TRANSFERRED OUT OF BUFFER TO
APPLICATION

(A)

(B)

(C)

(D)

DATA IN

4K 2K 16K12K 14K6K 10K 8K

4K 2K 16K12K 14K6K 10K 8K

4K 2K 16K12K 14K6K 10K 8K

4K 2K 16K12K 14K6K 10K 8K

RECEIVE WINDOW

RECEIVE WINDOW

RECEIVE WINDOW

(A)

(B)

(C)

(D)

DATA IN

4K 2K 16K12K 14K 6K 10K 8K

4K 2K 16K12K 14K 6K 10K 8K

4K 2K 16K12K 14K 6K 10K 8K

4K 2K 16K12K 14K 6K 10K 8K

SEND WINDOW

SEND WINDOW

SEND WINDOW

SEND WINDOW

unACK’ed

unACK’ed

Window fully opens
When ACK RCVD

NTuC2

A critical point to remember here is that all of this is happening at layer 4, the TCP layer. We have not
mentioned SONET, Ethernet or IP up to this point.

Fig. 3.

For maximum through-put the transmit window needs to remain open for a complete round trip propagation
delay interval. Stated mathematically:

RW ≥ BW x RTT
 or (1)

BW ≤ (RW/RTT)

RW is the receive window (receive buffer)
BW is the transmission speed (throughput)
RTT is the round trip delay.

If the RW is less than the delay bandwidth product the transmitter will spend some time sitting idle, i.e. not

transmitting, while waiting for an ACK packet. A safety margin of up to a factor of two is also required, [3]. See
table 1 for a comparison of maximum theoretical throughputs, buffer sizes, distances, and delays.

For intra-metro networks bandwidth delay product will most likely not be a concern.

Metro North

HQ
Branch 1

Travel time to send data

Travel time to rcv ACK

Metro South
Branch 2

Branch 3

Travel time to send data

Inter-metro
propagation delay

NTuC2

Table 1. Maximum Theoretical Throughput

 Receive Window - Bytes

One Way
Distance

RTT 8760 17520 65536 250 KByte

 64 miles 1mS 70 Mb/s 140 Mb/s 524.3 Mb/s 2 Gb/s
 320 5 mS 14 28 104.9 400 Mb/s
 640 10 mS 7 14 52.4 200 Mb/s
 1282 20 mS 3.5 7 26.2 100 Mb/s
 3205 50 mS 1.4 2.8 10.5 40 Mb/s

The distance delay is based upon using SMF-28 with a propagation delay of 7.8uS/mile. In addition on long
amplified non regenerated spans, dispersion compensating modules (DCM) will be used. On a span of
approximately 850 miles of SMF-28, DCMs can add about 2mS of round trip delay, [6].

The first column of receive window, 8760 Bytes is the default receive buffer in windows 98, 17520 and 65536
Bytes are default buffers in Windows 2000, depending upon which service pack you have. In general operating
systems limit the amount of memory that can be used by an application for buffering data. The host system must be
configured to support large enough buffers for reading and writing data to the network. The IETF has tackled this
issued several RFCs that address this problem, [4]. Typical Unix systems have initial default buffer sizes ranging
between 8kB – 32kB and expand to a default maximum value for the socket buffer between 128kB and 1MB, [5].
If the default buffer size is not large enough, the application must set its send and receive socket buffer sizes (at both
ends) to at least the delay bandwidth product of the link. Some network applications support options for the user to
set the socket buffer size (for example, Cray UNICOS FTP); many do not, [5]. This ends up becoming a trade off
for the system administrator, he can set the system wide default window to a “large” value but this is very
inefficient as many applications then end up consuming system resources that they do not use.

CLEC Implementation into the Wide Area
LightRiver Technologies has a client that implemented a metro-ethernet network as depicted by the Metro North
network of figure3. The MSPP interfaces were 10/100 fast Ethernet and network throughput was measured, by the
CLEC, at around 88Mb/s. The CLEC measured throughput using ftp and some low cost shareware products. This
is typical of many CLECs and ICOs. In these environments test equipment other than a BER tester is hard to come
by due to budget constraints. Next the CLEC deployed Metro South as a stand alone metro-ethernet network. The
performance of Metro South being the same as in the North. Eventually a customer in Metro North wanted to
connect a branch office in Metro South to his network in Metro North. The CLEC leased an OC-3 that traversed
two IXCs to link Metro North and Metro South. All services were Ethernet private line. A 100 Mb/s service was
sold to the customer. The distance between the two metros was approximately 400 miles.

When the circuit was brought up it was tested using both ftp and a shareware tool. The result was a throughput
of around 4Mb/s. Not particularly good for a 100Mb/s regional Ethernet connection. As trouble shooting began the
ping was measured to be 20mS and the receive window buffer was 16kB. A quick look at Table 1. shows the max
throughtput that could be hoped for is less than 7 Mb/s, which is definitely the case here, by about a factor of two,
[2,3]. However there is a problem here in that the distance between the two Metros is only 400 miles. But upon
further investigation it was discovered that the fiber route miles was actually about 990 miles. Exact figures could
not be gotten but the 990 miles was based upon admitted existing fiber routes. The original 400 miles given to us
was based upon direct air miles, not the fiber route. A quick calculation shows that the one way fiber propagation
delay is 7.8mS making the fiber RTT = 15.6mS. This leaves a little over4 mS unaccounted for. On a link of 990
miles it is possible that a DCM was in the link some which could have added on the order of 2mS of RTT, [6]. Then
there is the SONET network elements (NEs) at the customer sites plus the SONET network elements of the two
IXCs that provided transport. In this case there were two IXCs involved which means at a minimum there were at
least two NEs each leg of the path for a total of 4 NEs. The delay across a SONET NE could possibly be
somewhere in the 25uS to 75uS range depending upon a host of factors related to the NE itself and how the IXC was
actually configuring it. Just picking a number, 50us, results in a one way delay of 250uS, or 500us of RTT due to
the IXC SONET NEs.

Finally there is the delay of the MSPP that interfaces to the customer premises. The delay here will be composed
of the Ethernet GFP VCAT mapper and the SONET cross connect. The GFP process is store and forward so the
entire Ethernet frame is received before it is sent to the next stage. This makes the delay frame size dependent.

NTuC2

Typical delays are in the range of 1 to 2 SONET frames, 125uS – 250uS. If we assume we can get the Ethernet
frames GFPed, VCATed, and unto the cross connect in 250uS this then gives us a 500uS RTT for each MSPP.
Another delay factor to consider is that due to differential delay. One of the touted advantages of using VCAT is
that the individual constituent STS-1s comprising the VCAT group can be treated independently by any intermediate
network transport equipment. This means for example that if you have a VCAT group consisting of 2 STS-1s each
STS-1 can take a different path through the network. At the egress point the MSPP buffers the first STS-1 to arrive
until the second STS-1 arrives. Differential delay was probably not a factor in this case but it can not be ignored.

Delay Budget
Given the ramifications of delay on through-put performance it is desirable to account for sources of delay in any
given link. Table 2 summaries the possible sources of delay in the network.

Table 2. Circuit Delay

 One Way Delays
 Component

Delay Instances Total

 Ingress MSPP 0.25 mS 1 0.25 mS
 Egress MSPP 0.25 mS 1 0.25 mS
 Transport NEs 0.05 mS 4 0.2 mS
 Fiber 7.8 mS 1 7.8 mS
 DCM 1.0 mS 1 1.0 mS
 Diff. Delay 0 mS 1 0 mS

 Total 9.5 mS

In this example the total one way delay is 9.5mS. Times two gives us 19 mS of RTT, pretty close to the 20 mS
ping that was measured. In this example the calculated delay happened to work out pretty close to the measured
delay. In reality however many of these numbers can not be known precisely but based upon reasonable estimates a
safe “zone” of operation can be determined and decisions made accordingly.

References

1. Dr. Sidnie Feit, TCP/IP (McGraw-Hill, 1997), Chap. 10.
2. Brian Tierney, TCP Tuning Guide For Distributed Application on Wide Area Networks,
 http://www-didc.lbl.gov/tcp-wan-perf.pdf
3. Stanislav Shalunov, TCP over WAN Performance Tuning and Troubleshooting,
http://www.internet2.edu/~shalunov/writing/tcp-perf.html
4. IETF RFC 1323: V. Jacbson, “TCP Extensions for High Performance”
5. Pittsburg Supercomputing Center, Enabling High Performance Data Transfers,
http://www.psc.edu/networking/perf_tune.html#table
6. NFOEC: Vipin Patel, Peter C. Noutsios, “Latency on a Line Amplified, DWDM Backbone Network,” in National Fiber Optics
Engineering Conference (2003).

NTuC2

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

